If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+47k-16=0
a = 3; b = 47; c = -16;
Δ = b2-4ac
Δ = 472-4·3·(-16)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(47)-49}{2*3}=\frac{-96}{6} =-16 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(47)+49}{2*3}=\frac{2}{6} =1/3 $
| -5(5-5p)-2(-4p+1)=-27 | | Y=39x+0.25 | | -10+3p=3p-2p | | 3x-20=-2x+10 | | (x)÷3=25 | | -3x+28=-7(-8x-4) | | 20x-8=45x+7 | | 6^2x=6^8 | | 5(3r-1)=100 | | 27=-4(-4n-5)+3(n-4) | | Q=25h | | 4x-10=3×+6 | | 3(x-1)÷4=3 | | 45=5(4-4n)+5(n+2) | | x÷3=25 | | -2-4x-6x=-122 | | -2-4x-6=-122 | | 3+6a=3+6a | | 113+2h=967 | | 4(b-4);b=5 | | 5(4n-2)-2(5+4n)=-20 | | 14/30d=-196 | | X^2-34;x=10 | | 12x=138 | | a+7/15=2/3 | | 175+2h=997 | | 6=a+8/3 | | 6=a+3/3 | | X^3-7x^2+5x-35=0 | | 5m-1/4-2m+11/7=3 | | -3x-24=9 | | 2z-12=2z+16 |